

Abstract**[Project Information]**

Project Title : Development of Near-Infrared Electrochromic Materials for Heat-Shield Control

Project Number : JPMEERF20221M02

Project Period (FY) : 2022-2024

Principal Investigator : Higuchi Masayoshi

(PI ORCID) : ORCID0000-0001-9877-1134

Principal Institution : National Institute for Materials Science

Tsukuba City, Ibaraki, JAPAN

Tel: +81298604744

E-mail: HIGUCHI.Masayoshi@nims.go.jp

Cooperated by : National Institute of Advanced Industrial Science and Technology

Keywords : Heat-shield, Near-infrared, Electrochromic, Redox, Metallosupramolecular polymer

[Abstract]

Two themes were carried out: development of near-infrared electrochromic materials and devices, and development of an ultra-efficient synthesis method for near-infrared electrochromic materials. Overall, we succeeded in developing a metallo-supramolecular polymer that exhibits near-infrared EC properties, with a transmittance difference of more than 50% between the transmitting and blocking states in the near-infrared region. In sub-theme 1, we succeeded in developing a metallo-supramolecular polymer with a two-dimensional nanosheet structure that exhibits multi-color electrochromic properties by precisely introducing two types of metal species. In sub-theme 2, we developed a new method for synthesizing metallo-supramolecular polymers in a short time by using microwaves.

[References]

Microwave-Assisted Quick Synthesis of Ru(II)-Based Metallosupramolecular Polymer for Improved Electrochromic Properties, U. Rana, D. C. Santra, B. Prusti, C. Chakraborty, T. Ikeda, Y. Saito, K. Takeuchi, R. Nagahata, M. Higuchi, *Macromol. Chem. Phys.*, 225(5), 2300381 (2024). (Selected to cover) 10.1002/macp.202300381

Triple-Band Electrochromic Switching among Visible (400-750 nm), NearIR-I (750-1000 nm), and NearIR-II (1000-1600 nm) Regions with Triple-Redox-Active Metallosupramolecular Polymers, D. C. Santra, S. Mondal, B. Prusti, M. Higuchi, *ACS Appl. Opt. Mater.*, 2(6), 1117-1127 (2024). 10.1021/acsao.4c00108

Construction of Heterometallic Coordination Nanosheets Comprising Both Inert and Labile Metal

Ions Together via Metalloligand Approach, M. K. Bera, S. Sarmah, A. Maity, M. Higuchi, Inorg. Chem., 64(18), 8837–8844 (2025). (Selected to cover) 10.1021/acs.inorgchem.5c00224

This study was supported by the Environment Research and Technology Development Fund of the ERCA (JPMEERF20221M02) funded by the Ministry of the Environment.