Development of an Estimation Methodology Based on Clarification of the Mechanism of Greenhouse Gas Emission from Treated/Untreated Wastewater Discharged into Water Environment

Principal Investigator: Hiroshi YAMAZAKI

Institution: Department of Civil and Environmental Engineering, Toyo University,

2100, Kujirai, Kawagoe City, Saitama 350-8585, JAPAN

Tel: +81-49-239-1404 / Fax: +81-49-231-1400

E-mail: yamazaki058@toyo.jp

- Cooperated by: Material Cycles Division, National Institute for Environmental Studies • Department of Civil Engineering and Architecture, National Institute of Technology, Akita College
 - Department of Chemical Engineering, Tokyo University of Agriculture and Technology

[Abstract]

Key Words: Greenhouse Gases (GHGs), Nitrous Oxide (N₂O), Methane (CH₄), Treated Wastewater, Untreated Wastewater, Estimation Methodology of GHGs Emission, Reduction method of GHGs Emission, Clarification of Mechanism of GHGs Emission, Stable isotopes

Country-specific emission factors (EFs) of CH_4 and N_20 for wastewater treatment plants (WWTPs) have been developed in Japan, however, IPCC default emission factors are used for treated and untreated wastewater. This study aimed to develop a method for estimating accurate greenhouse gases emissions from the natural decomposition of organic and nitrogen compounds in treated wastewater and untreated wastewater. Based on the continuous monitoring of N_20 in several WWTPs, non-negligible amount of dissolved N_20 in the treated wastewater was found as a new emissions source. Detailed understanding of the spaciotemporal distribution of dissolved GHGs in the wastewater treatment processes enabled us to develop a new EF of dissolved N_20 in the effluent of WWTPs. Country-specific CH_4 and N_20 EFs in rivers were also developed through the year-round field surveys. A methodology of the simultaneous evaluation of true N_20 production/consumption rate in river sediments was developed by use of ¹⁵N isotope tracer. Molecular microbiological analysis identified some key microbes in the N_20 generation and consumption. Overall greenhouse gases emissions from wastewater management including CH_4 and N_20 emissions from WWTPs and CO_2 emissions derived from energy consumption were estimated for several cases. Comparing these estimations, scenarios to minimize overall greenhouse gases emissions are suggested.

[References]

- S. Masuda, T. Sato, I. Mishima, C. Maruo, H. Yamazaki, O. Nishimura: Journal of Environmental Management, 112621 (2021) Impact of Nitrogen Compound Variability of Sewage Treated Water on N₂O Production in Riverbeds. (IF:6.789)
- 2) Y. ZHOU, R. TOYODA, T. SUENAGA, T. AOYAGI, T. HORI, A. TERADA: Water Res. 216, 118276 (2022) Low nitrous oxide concentration and spatial microbial community transition across an urban river affected by treated sewage. (IF:11.236)
- 3) Shohei Otomo, Akihiko Terada, Yu-You Li, Kazuya Nishitoba, Fumiaki Takakai, Kunihiro, Okano, Naoyuki Miyata, Shuhei Masuda: Journal of Water and Environment Technology, 19(3):139-152(2021) Long-term assessment of N₂O emission factor in full-scale oxidation ditch reactor considering spatiotemporal distribution. (CiteScore:1.6)