

Abstract**[Project Information]**

Project Title : Practical Research for the Site Selection of CCS in Green Tuff Region

Project Number : JPMEERF2022R02

Project Period (FY) : 2022-2024

Principal Investigator : Takaya Yutaro

(PI ORCID) : ORCID0000-0003-4046-6780

Principal Institution : Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo
Tokyo, Japan
Tel: +81-3-5841-0820
E-mail: y-takaya@sys.t.u-tokyo.ac.jp

Cooperated by :

Keywords : Geological CO₂ storage, CO₂ mineral trapping, Green Tuff, Water–rock interaction experiment

[Abstract]

In this study, potential sites for geological CO₂ storage in Japan were evaluated, with a specific focus on the Green Tuff region. Green Tuff refers to tuffaceous rocks formed through submarine hydrothermal activity during the formation of the Japan Sea, characterized by their green coloration resulting from hydrothermal alteration. Some of these rocks exhibit basaltic or andesitic compositions and are enriched in calcium and magnesium, making them favorable candidates for mineral carbonation via reactions with injected CO₂ to form stable carbonate minerals.

However, Green Tuff encompasses a broad range of lithologies that vary significantly in chemical and mineralogical composition depending on their age and the extent of alteration. Therefore, it is essential to elucidate how such compositional differences influence the CO₂ mineral trapping potential. To address this, Green Tuff rocks with diverse chemical and mineralogical characteristics were collected from several regions and subjected to CO₂–water–rock interaction experiments to identify the primary factors controlling their capacity for CO₂ mineral trapping.

Field investigations and sampling were conducted, followed by detailed petrographic and geochemical analyses. CO₂–water–rock reaction experiments were performed using both powdered and cube-shaped samples to assess parameters such as CO₂ fixation rates. The experimental results demonstrated that hydrothermal alteration, which defines “Green Tuff”, significantly reduces its capacity for mineral trapping of CO₂. Specifically, a lower degree of alteration and the preservation of primary rock-forming minerals such as plagioclase and pyroxene were found to be critical for CO₂ mineral fixation. In contrast, alteration minerals such as clay minerals and zeolites contributed minimally to CO₂ fixation.

Based on these findings, andesitic rock formations with low degrees of hydrothermal alteration—such as those found in the Shikaribetsugawa Formation in western Hokkaido and the Ushikiri and Jōzōji formations on the Shimane Peninsula—are identified as promising candidates for CO₂ storage sites within the Green Tuff region.

Reference: Yutato Takaya, Wako Kobayashi, Mitsuki Ogasawara, The effect of hydrothermal alteration of tuffaceous rock on CO₂ mineral trapping potential, Applied Geochemistry. (submitted)

This research was performed by the Environment Research and Technology Development Fund (JPMEERF20222R02) of the Environmental Restoration and Conservation Agency provided by Ministry of the Environment of Japan.